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CONSTRAINTS AND CASIMIRS FOR SUPER POINCARE
AND SUPERTRANSLATION ALGEBRAS IN VARIOUS
DIMENSIONS

BRUNO ZUMINO

Department of Physics, University of California and Theory Group of Lawrence
Berkeley National Laboratory, Berkeley, California 94720

We describe, for arbitrary dimensions the construction of a covariant and super-
symmetric constraint for the massless super Poincaré algebra and we show that the
constraint fixes uniquely the representation of the algebra. For the case of finite
mass and in the absence of central charges we discuss a similar construction, which
generalizes to arbitrary dimensions the concept of the superspin Casimir. Finally
we discuss briefly the modifications introduced by central charges, both scalar and
tensorial.

1. Constraints and Casimirs

Let us start with the super Poincaré algebra,

[iJpos Pul = Mo Py — (p < 0) (1)

[idpos Tuw] = o Juvp — (p 3 )] = (1 > v) (2)
[Pu, PJ=0 , [Py,Q]=0 (3)

170, @] = ~3T00Q (4)

{Q,Q} =2ip (5)

Here n,, = diag(—1,1,.,1) and = T, P*, with T', satisfying the Clifford
algebra. Also, @ is a spinor of supercharge, @ = :QT'° and I = %[FM, T'v].
All spinor indices are suppressed; in particular, QT = (Q*)T where Q* is
the adjoint of @ and () indicates transposition with respect to the spinor
indices. Notice also that if @) is a chiral spinor in D spacetime dimensions,
then the right-hand side of Eq. (5) should contain a chiral projector %(I:I:F)
and a convenient definition for T is

[ =iP-10,T, .. .Tp_;
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We define the supersymmetry variation of an operator O to be

30 ={Q,0} or [Q,0] (6)

depending on whether @ is fermionic or bosonic.
Next, we construct two antisymmetric three-tensors, namely

1
Waww = Poxduws = o > EPuw (7)
© perm
and
SA;U/ = QFAMVQ (8)

In four dimensions, Eq. (7) is the dual of the Pauli-Lubanski vector, so that
W should be thought of as its generalization to higher dimensions.

Here and in the following, the angular brackets between indices indicate
a sum over all permutations of the indices, each taken with a sign and
divided by the total number of permutations, as in Eq. (7). Furthermore,
Iapw = TexI'uIT'vy >. Using the algebra Eqgs. (1-5), it is easy to compute
the supersymmetry variation of W. One finds

6W>\uu = _%P<>\FMV>Q (9)
As for S,
65}\;“/ = 6@ F)\MVQ - QFAMV 6Q (10)

The first term in the expression above can be computed using Eq. (5).
The second term is different from zero only if () is a Majorana spinor. If
it is a Majorana spinor, d@ can again be computed from Eq. (5) using
the Majorana condition. The details of the computation vary depending
on the spacetime dimension and also, for even dimensions, on whether @
is a chiral or a Dirac spinor. But the final result is that, if the second
term 1is nonzero, then it is exactly equal to the first term. Hence, the
supersymmetry variation of S is twice as large when @) is a Majorana spinor.
In particular, we find

5 = {—QiPFAW ) if Q is not a Majorana spinor, an

—4i Py, Q@ if Q is a Majorana spinor

It is convenient to rewrite the variation of S as the sum of two terms, using
the identity

EFANV = 6P<>\Fu1/> - FAW’E (12)
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The first term has the same form as the variation of W in Eq. (9), and can
be used to cancel it if we take an appropriate linear combination of W and
S. The second term, instead, yields a variation proportional to P}, and
PQ = 0 in a massless representation. We denote the relative coefficient
between W and S by « and their linear combination by A,

AANV = W)\ul/ — K?SM“, (13)

It should be clear from the discussion above that the value of x depends
only on whether @ is or is not a Majorna spinor and, in particular,

. — {21—4 %f Q %s not a.Majoran.a spinor, (14)
35 1 Qis a Majorana spinor
With the value of k as above, we find
?
6A>\uu = _EFAMVEQ (15)
so that 1s possible to impose the constraints
PZIO,EQIO,AANVIO (16)

consistently with the full super Poincaré algebra. Actually, to impose con-
sistently Eq. (16), one also needs §(#Q) o< P?, which is true.

The constraints Eq. (16) were found in 11-dimensional spacetime in the
course of the off-shell quantization of the superparticle [1], with the appro-
priate value k = 1/48 for the relevant coefficient () is a Majorana spinor in
11 dimensions). The constraint A actually fixes completely the represen-
tation, and in 11 dimensions fixes it to be the supergravity multiplet. In
the case of extended supersymmetry one can construct a tensor analogous
to Ay 1n a straightforward way. Namely, if there are NV supercharges ¢,
then

A)\uu = W)\ul/ - Z I= 1N KIQIFANVQI (17)

where each of the k1 is given by Eq. (14). Then
]
12

and again A can be set to zero consistently. In four spacetime dimensions

6IA)\;U/ = [QI; AA;U/] = F)\ul/ (18)

the A tensor is only one of a continuous class of supercovariant objects that
can be constructed. Indeed, if one defines

1
A(A)L)V = AANV - gXPagaAuV (19)
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where y is an arbitrary real number and ¢ 1s the completely antisymmetric
tensor with eg123 = +1, then the supersymmetry variation of AX) ig the
same as that of A. Hence AX) = 0 is also a good constraint, compatible
with the full super Poincaré algebra. We will elaborate on this point in the
next section.

It is instructive to compare the A tensor to a similar construction
which is useful for massive representations. We could rewrite the varia-
tion Eq. (11) of S using the identity

1
Pl =3Pl s + 5“77’, L] (20)

instead of (12). Again the first term can be used to cancel the variation
of W if a suitable relative coefficient between W and S is chosen. Let us
emphasize that the coefficient needed differs from « by a factor of 2. We
call the linear combination C,, and the relative coefficient p. Hence,

C)\ul/ = WANV - PSA;W (21)
with
% if Q is not a Majorana spinor,
p=3Y . . . (22)
57 11 Qis a Majorana spinor
Then
?
3O = =5 [Maw P1Q (23)

12

and because of the identity [PAFAW,E] = 0, the antisymmetric tensor
Cyuw = PO (24)
is invariant under supersymmetry transformations. Then the scalar
C=CLCH (25)

is a Casimir of the full super Poincaré algebra and can be used to label its
massive representations. For massless representations, on the other hand,
it 1s possible to show that C' vanishes identically. In that case A is a more
useful quantity to consider. Notice that C' generalizes to arbitrary dimen-
sion a four-dimensional Casimir constructed in [2-5], where the eigenvalues
of that Casimir were termed “superspin”.



October 23, 2004 12:5 Proceedings Trim Size: 9in x 6in Zuminol

2. Meaning of the Constraint A = 0

To investigate how A = 0 constrains massless representations of the super
Poincaré algebra, we choose a frame in which P = (F, E,0,...,0) (light-
cone frame). In D spacetime dimensions, this choice breaks SO(D — 1,1)
down to the ‘little group’ ISO(D — 2), namely the group of rotations and
translations in D — 2 dimensions. For convenience, we introduce Latin
indices of two types, a,b,¢=0,1 and 7,5,k = 2,...,D — 1, so that we can

express the choice of frame with
PGIE,PiIO (26)

Then the components of W are as follows:

Wape = Wijer =0 (27)
FE FE
Wabi = €ab g(Jz —Ji1) = €ap gAi (28)
FE
Waij = £-Ji (29)

where €45 is the antisymmetric tensor in two dimensions with €91 = +1 and
the upper sign in Eq. (29) holds when a = 1, the lower when a = 0; similarly
in Egs. (34) and (37) below. Note that A; = (J;o — J;1) are precisely the
generators of the translations of ISO(D — 2).

Before evaluating the components of S, we need to discuss how the
frame choice Eq. (26) affects the supercharges ¢ which, in a massless rep-
resentation, are subject to the constraint Q) = 0. The answer is that some
components are projected out. Indeed

Q=0 , 1I_.@=0 (30)
where I and II_ are complementary projectors given by
My = %(1 + I''1?) (31)
Using Eq. (30) and performing some algebra, we see that the components
of S are
Sabe = Sijk = 0 (32)
Sabi = 0 (33)

Saij = FQ'T:;Q (34)
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Therefore, the components of A are

Agpe = Ajji =0 (35)

E
Aabi = €ab gAi (36)

E .
Amj::t<§—ﬁj+udyFMQ) (37)

with « given by Eq. (14). We see that setting A = 0 is equivalent to
imposing the pair of conditions

A; =0 (38)

. KR
Jij = =31 T QT;;Q (39)

The first condition requires that the translations of the little group be
represented trivially. This is desirable on physical grounds since a nontrivial
representation would lead to unwanted continuous degrees of freedom, by a
standard field theory argument. The second condition, on the other hand,
restricts the eigenvalues of J;; to be those of the quadratic operator to
the right of Eq. (39). Those eigenvalues can be computed explicitly in
any dimension. They are of course independent of the values of ¢ and j,
because the frame choice Eq. (26) does not break the rotational invariance
in the ¢ and j indices. The eigenvalues are quantized as a result of the
supersymmetry algebra Eq. (5). In this frame, the algebra can also be
written as

{Q,Q"} =4ET, (40)

from which it follows that the nonzero components of ) are proportional
to fermionic oscillators. How many oscillators exactly will depend on the
spacetime dimension and on what kind of spinor @ is (for instance, a chiral
or a Majorana condition will each reduce by half the number of independent
oscillators). In the end, the right-hand side of Eq. (39) can be written
as a simple function of several fermionic number operators. Hence, the
eigenvalues of J and their multiplicities can be easily computed and from
that a representation can be inferred uniquely.

Two remarks are in order. When extended supersymmetry is present all
that we have done can be repeated with only minor changes. The principal



October 23, 2004 12:5 Proceedings Trim Size: 9in x 6in Zuminol

7
difference is that Eq. (39) is replaced by
N

Jij = —3i ; - QT Qr (41)

which in turn can be written as a function of N sets of number operators.
The second remark concerns the case of four spacetime dimensions, where
a continuous class of constraints A0 exists, as mentioned in the previous
section. In four dimensions the little group is 7.S0(2) and it consists of the
helicity and of two translations. With our choice of frame Eq. (26), the
generators are Joz, Ay and As, respectively. Now, setting AX) =0 adds a
shift to the eigenvalues of Jo3, namely, to the helicities of the representation,
while, interestingly, the constraints As = 0 and A3 = 0 are unaffected,

As = A3 =0 , Jozg = —3i % QTFZSQ +X (42)

In summary, all possible representations with A, = A3 = 0 are recovered
as y varies. It should not come as a surprise that x appears to be a
continuous variable, because our construction is purely algebraic, whereas
the quantization of the helicities in four dimensions is a consequence of the
topology of the little group.

3. The Case of Finite Mass

For completeness, we present in this section a discussion of the tensor C,,
defined in Eq. (24). We proceed along the lines of the discussion of A.
What follows is a generalization to generic spacetime dimensions of similar
arguments that can be found in [2-5] for the four-dimensional case.

To begin, we choose a frame in which P = (m0, .,,,0) (rest frame). The
little group is SO(D—1) and it is generated by J;; where ¢, j =1,...,D1. In
the rest frame, P = mTy, and the supersymmetry algebra Eq. (5) becomes
{Q, QY = 2m. If we rescale the supercharge @ by defining a = Q/v/2m,

then a satisfies

{a,al} =1 (43)
1

[iJij, a] = —§Fija (44)
1

[iJij,al] = +=T;al (45)

2
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where the latter two equations follow from Eq. (4). In the rest frame, the
components of C, are

2

Cou=0 , Cjj = —% [Ji; + 6ipa'T;;a] (46)
with p given by Eq. (22).
We now define the tensors
T;; = —6ipalTyja (47)
and
Yij = =3Ci;/m’? (48)

The point of these definitions is that 7;; and Y;; are angular momentum op-
erators, in the sense that they satisfy each the commutation relations of the
generators of the little group SO(D — 1), exactly as J;; does. Furthermore,
T and Y commute with one another. Equation (46) becomes

Jij = Yij + Ty (49)

and therefore we can conclude that J is the composition of two independent
angular momentum operators 7" and Y.

4. Concluding Remarks

We introduced a covariant tensor A which, in the case of a massless repre-
sentation of the super Poincaré algebra, is also supersymmetric. Imposing
A = 0 is a supervcovariant way to fix the representation completely, in-
cluding the generators of the translations in the little group. In particular,
the translations are represented trivially, as required on physical grounds.

For the case of nonvanishing mass, we have constructed angular mo-
mentum operators Y;; and a Casimir C. The latter generalizes to higher
dimensions the superspin operator. We have also shown how Y;; can be
used to construct representations of the super Poincare algebra.

So far we have ignored the possibility that some of the generators of
the algebra are central charges. In the case of non-vanishing mass, when
scalar central charges are present, the results described above can be gen-
eralized for any space-time dimension. One can keep the same definition
of A as for the massless case. Since the algebra is now different (see e.g.
ref. [6], pages 390-393) the vanishing of A picks up representations which
resemble those for zero mass, the mass term in the r.h.s. of the algebra
being compensated by the terms involving the scalar central charges in the
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case of BPS states. These BPS representations correspond to one-half the
supersymmetry of the massive algebra with no central charges. It is well
known (see ref. [7] for the case of four space-time dimensions) that there
are other BPS representations, in which more than one-half supersymmetry
is preserved, Again, A = 0 picks out very special and physically interesting
representations. Finally, one can extend the results of the previous sections
to the case of nonscalar, tensorial central charges [8, 9, 10], which occur
in presence of extended objects in space-time: membranes, domain walls
etc., (clearly tensorial central charges restrict the super Poincaré algebra
to a super translation algebra, see e.g. ref. [6], pages 397-401, where ba-
sic properties of tensorial central charges are discussed; on pages 408, 409
useful references are given). It is interesting that, again, the case of one-
half supersymmetry emerges as interesting, for instance in the case of the
supermembrane in eleven dimensional space-time [8].
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